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Abstract. Agent Scheduling Problems (ASPs) are common in var-
ious real-world situations, requiring explainable decision-making
processes to effectively allocate resources to multiple agents while
fostering understanding and trust. To address this need, this paper
presents a logic-based framework for providing explainable deci-
sions in ASPs. Specifically, the framework addresses two types of
queries: reason-seeking queries, which explain the reasoning behind
scheduling decisions, and modification-seeking queries, which offer
guidance on making infeasible decisions feasible. Acknowledging
the importance of privacy in multi-agent scheduling, we introduce
a privacy-loss function that measures the disclosure of private in-
formation in explanations, enabling a privacy-preserving aspect in
our framework. By using this function, we introduce the notion of
privacy-aware explanations and present an algorithm for computing
them. Empirical evaluations demonstrate the effectiveness and ver-
satility of our approach.

1 Introduction

Agent scheduling problems (ASPs) involve allocating a finite set of
resources to multiple agents over a specific time frame. These prob-
lems are pervasive in real-world scheduling systems, ranging from
personnel shift assignments [34] to machine job allocation [38], and
even scheduling awake and asleep periods for Mars rovers [8]. Apart
from generating a schedule that allocates resources to agents, it is
crucial to ensure that both the schedule and the underlying decision-
making process are explainable. An agent may require an expla-
nation for why certain scheduling decisions were not satisfied or
why a schedule could not be generated at all. In such cases, un-
derstanding the reasons behind these issues is not only enlighten-
ing but also necessary for rectifying the problem. Additionally, pri-
vacy plays a significant role due to the sensitive nature of personal
information that may be included in ASPs, such as agents’ con-
straints and preferences. Preserving privacy helps protect individ-
ual agents from potential discrimination or unauthorized access to
their information, fostering trust and willingness to participate in the
scheduling process. Therefore, incorporating explanation generation
modalities with privacy-preserving considerations into ASP systems
is highly desirable.

To address this need, this paper presents a logic-based framework
aimed at making ASPs explainable. The framework accommodates
two types of queries: reason-seeking queries, which clarify why a
scheduling decision was (or not) derived, and modification-seeking
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queries, which offer guidance on rendering infeasible scheduling de-
cisions feasible. Recognizing the importance of privacy in multi-
agent scheduling, we use the concept of agent access rights to dis-
tinguish between public and private information, and introduce a
straightforward privacy-loss function to quantify the amount of pri-
vate information disclosed in explanations. Using this function, we
then define the notion of privacy-aware explanations and present the
Query Understanding and Efficient Response with Intelligible Ex-
planations of Schedules (QUERIES) algorithm for computing them.
This approach ensures that the explanations provided maintain the
confidentiality of sensitive information while still offering valuable
insights into the scheduling decisions.

In summary, our framework advances existing explainable
scheduling methods, which typically focus on specific scheduling
problems [1, 3, 28], by providing a general solution applicable to a
broader range of ASPs. Our main contributions are as follows:
• We introduce a general logic-based explanation generation frame-

work for ASPs that addresses both reason-seeking queries and
modification-seeking queries.
• We propose a privacy-loss function to quantify the amount of pri-

vate information included in an explanation and define the concept
of privacy-aware explanations.
• We present the QUERIES algorithm for computing explanations.

Empirical evaluations demonstrate the effectiveness and versatility
of our approach.

2 Motivating Thought Experiment
To better understand the challenges faced by agent scheduling prob-
lems and the importance of generating effective explanations, let us
engage in a thought experiment inspired by a simplified version of the
employee shift assignment problem [34]. Consider a scenario based
on the employee shift assignment problem [34]. In this scenario, an
automated scheduling agent named Alice is responsible for assign-
ing shifts to employees at a company. Specifically, there are three
shift types – morning, afternoon, and evening – and four employees
– Thanos, Irene, Vicky, and Rose – who need to be assigned shifts
over three days from Monday to Wednesday.

The scheduling problem consists of the following domain con-
straints:
C1: All employees must be assigned a total of two shifts.
C2: Employees cannot be assigned multiple shifts per day.
C3: No two employees can be assigned the same shift the same day.
C4: Employees cannot be assigned a morning shift right after an

evening shift.



Figure 1: Instance of the thought experiment with Alice and Thanos.

Moreover, each employee has personal constraints:
CT : Thanos wants only morning or afternoon shifts.
CI : Irene does not want evening shifts.
CV : Vicky wants the afternoon shift on Tue. and Wed.
CR: Rose wants the morning shift on Tue. and Wed.

Here, Alice’s objective is to find a schedule that satisfies all do-
main constraints and, as much as possible, accommodates the em-
ployee constraints according to their weights, which in this example
are based on the employees’ seniority levels.

Let us assume that Alice finds a feasible schedule, but it does
not meet Thanos’ constraint of being assigned morning or afternoon
shifts. Thanos, in turn, may inquire about the reason for this assign-
ment. To generate an effective explanation, Alice needs a framework
that can generate explanations that are informative and tailored to the
specific needs of the explainee, that is, Alice must first recognize the
nature of the explainee’s query.

In our thought experiment, Thanos’ query is a reason-seeking
query, as he wants to know “why” his constraint was unsatisfied in
the schedule. In response, Alice should provide a (reason-seeking)
explanation that identifies the reasons behind her (scheduling) deci-
sion. For example, Alice might explain that due to the constraints of
the problem and the higher priority given to the preferences of Rose
and Vicky, it was not possible to assign Thanos morning shifts on
Tuesday or Wednesday without affecting the overall quality of the
allocation.

However, providing a reason-seeking explanation alone may not
be sufficient in all scenarios. Suppose Alice could not create a fea-
sible schedule at all due to conflicting constraints. In this case, a
higher-level employee, such as a manager, may want to understand
“how” to adjust the scheduling problem to derive a feasible schedule.
This type of query is a modification-seeking query, which requires an
explanation that helps the manager identify issues preventing a fea-
sible schedule and suggest potential modifications.

In addition to addressing these two types of queries, Alice’s expla-
nations should respect the privacy of the other employees. To achieve
this, Alice could only reveal information according to the employees’
access rights. In doing so, Alice distinguishes between public infor-
mation (information that can be revealed to employees with access
rights) and private information (information that cannot be revealed
to employees without access rights).

This thought experiment demonstrates some of the challenges of
generating explanations in the context of agent scheduling problems.
Indeed, in Section 4 we present an explanation generation frame-
work that can handle the complexity of the problem, account for the
explainee’s needs and access rights, and produce informative expla-
nations.

3 Background
We now provide some background on the satisfiability (SAT) prob-
lem, a general agent scheduling problem (ASP) definition, and our
logic-based representation of that problem.

3.1 Satisfiability

We assume familiarity with propositional logic. A knowledge base
KB is a set of constraints, where each constraint is built up recur-
sively from literals (i.e., variables or its negations) using the usual
logical connectives.

Satisfiability (SAT) [9] is the prototypical NP-complete problem
of finding an assignment of truth values to variables in order to make
a knowledge base KB true. If there exists a truth value assignment µ
that makes KB true, then we say that µ is a model of KB and KB is
satisfiable, otherwise KB is unsatisfiable, denoted by KB |= ⊥. A
KB entails a constraint ϕ, denoted KB |= ϕ, iff KB ∪ {¬ϕ} |= ⊥.

Partial weighted MaxSAT [24] is an extension of SAT in which
constraints are partitioned into hard and soft constraints, where each
soft constraints is given a weight. Hard constraints must always be
satisfied in a solution, whereas soft constraints may not. The goal of
MaxSAT is to find an assignment that satisfies the hard clauses and
maximizes the sum of weights of the satisfied soft clauses.

3.2 Agent Scheduling Problem

In general, the goal of an agent scheduling problem (ASP) is to dis-
tribute a set of resources to a set of agents over a scheduling hori-
zon. Formally, it can be defined as a tuple A = 〈A,R, S,C〉, where
A = {ai}ni=1 is a set of agents, R = {rj}mj=1 is a set of resources,
S = {st}ht=1 is a set of time steps, and C is a set of constraints that
consists of domain constraints, which are intrinsic and describe the
problem’s dynamics, as well as agent constraints, which are extrinsic
and describe the agents’ personal constraints.

A solution to an ASPA is a schedule Σ, that is an |A| × |R| × |S|
matrix, where each cell Σ[i, j, t] = 1 if agent ai is assigned resource
rj at time step st and Σ[i, j, t] = 0 otherwise. A schedule is feasible
if all the domain constraints, which are treated as hard constraints,
are satisfied. A schedule is optimal if it is feasible and all the agent
constraints, which are treated as soft constraints, are maximized.

3.3 Logic-based Agent Scheduling Problems

In this paper, we model an ASP A as a logic-based problem, that
is, we encode A into a set of logical constraints for which satis-
fiability can be decided. By using an appropriate logical language,
the problem’s dynamics are encoded into a knowledge base KB
that expresses all the scheduling constraints that a desired schedule
should satisfy. Specifically, the knowledge base KB consists of do-
main constraintsCD and agent constraintsCA, whereCD are treated
as hard constraints and CA as weighted soft constraints. As such, the
scheduling problem turns into a MaxSAT problem, where the quality
of a feasible schedule depends on the degree to which the soft clauses
are satisfied. The objective function of a candidate schedule is then
defined as the sum of weights of satisfied soft constraints, and an
optimal schedule is the solution with the highest possible objective
value. A plethora of scheduling problems has been modeled using
logic-based approaches [2, 5, 10, 14, 18, 21, 23, 27].

For ease of presentation, in this paper we will use propositional
logic to encode ASPs. We formally define a logic-based ASP (L-
ASP) as follows:



Figure 2: Overview of Our Explainable Logic-based Agent Scheduling Problem Pipeline.

Definition 1 (L-ASP). An L-ASP is a tuple L = 〈A,R, S,KB〉,
where KB = CD ∪ CA and:
• CD is the set of domain-specific (hard) constraints. These con-

straints are intrinsic to the problem and must be satisfied by a
solution.
• CA =

⋃n
i=1 Ci is the set of agent (weighted soft) constraints.

Each Ci = {(wk, cik)}lk=1, where each cik is a constraint associ-
ated with agent ai and wk is its corresponding weight.

A schedule can be derived by using off-the-shelf SAT solvers [4]
to search for a model µ of KB that satisfies all of the constraints
in CD and possibly some of the constraints in CA. If a model µ
exists, then a feasible schedule Σµ is derived by extracting from µ the
truth values of the variables corresponding to agents, resources, and
time steps. Otherwise, the scheduling problem is infeasible, i.e., no
feasible schedule exists. Finally, a schedule Σµ is deemed optimal if
a model µ exists and maximizes the cumulative sum of weights of
satisfied soft constraints in CA.

Note that the knowledge base KB = CD ∪ CA may be unsatis-
fiable due to inconsistencies in the domain constraints and/or agent
constraints. However, if a schedule Σµ exists, then that means that
Σµ logically follows from a satisfiable subset KBµ ⊆ KB . In the
next section, we use KB to denote the knowledge base from which
explanations are derived. Depending on the context, KB could re-
fer to either a satisfiable subset of the original knowledge base (i.e.,
KBµ) or the overall unsatisfiable knowledge base.

4 Explainable Agent Scheduling Problems
We now present our explanation generation framework for agent
scheduling problems. We particularly address the following problem:

Given a logic-based L-ASP L = 〈A,R, S,KB〉 and a query ϕ
with respect to KB , the goal is to find an explanation for ϕ that
can be inferred from KB .

As discussed in Section 2, we are interested in a framework that
can generate explanations for agent scheduling problems that are not
only informative but also tailored to the specific needs of the ex-
plainee. Such a framework should in principle:
• Address two general types of queries: reason-seeking queries,

which aim to uncover why certain scheduling decisions were (or
not) made, and modification-seeking queries, which focus on iden-
tifying potential modifications to the problem.

• Generate informative and concise explanations for the two query
types.
• Preserve the privacy of other agents by only revealing information

with respect to access-rights.
A general pipeline is shown in Figure 2. We now describe how to

generate explanations for the two query types.

4.1 Explaining Reason-Seeking Queries

A reason-seeking query, denoted by ϕr , aims to uncover why certain
scheduling decisions were made. Recall from Section 2 that Thanos
wants to know why Alice did not assign him only morning shifts.
Alternatively, a higher-level employee (e.g., a manager) may want to
understand why a feasible schedule cannot be generated.

To explain reason-seeking queries, we assume that KB |= ϕr .
There are two possible scenarios to consider:
• Agent Constraints in a Schedule: If the query ϕr captures an

unsatisfied (or satisfied) agent constraint in a schedule Σµ, then
ϕr ∈ ¬CA (or ϕr ∈ CA).1 In this scenario, an explanation should
identify the reasons why the constraint holds true with respect to
the schedule. Note that the knowledge base KB here is satisfiable
(see Section 3.3).
• Infeasible Scheduling Problems: If the query ϕr is aimed at cap-

turing why a problem is infeasible, i.e., why a feasible schedule
cannot be generated, then generally ϕr = ⊥. In this case, the ex-
planation should identify the inconsistencies within the scheduling
constraints that lead to infeasible schedules. Note that the knowl-
edge base KB here is unsatisfiable, i.e., there is no model of KB
from which a feasible schedule can be extracted.

Formally now, an explanation for a reason-seeking query is defined
as follows:

Definition 2 (Reason-seeking Explanation). Given a knowledge
base KB that encodes an L-ASP L and a reason-seeking query ϕr ,
we consider an explanation εr ⊆ KB to be a reason-seeking expla-
nation for ϕr if:
• εr is sufficient: εr |= ϕr , meaning that the explanation εr entails

the query ϕr .
• εr is minimal: For all proper subsets ε′r ⊂ εr , ε′r 6|= ϕr , indicating

that no smaller subset of εr are sufficient.

1 Note that ¬CA denotes the logical negation of all the constraints in CA.



These conditions ensure that the reason-seeking explanation is both
sufficient and minimal in addressing the query.

4.2 Explaining Modification-Seeking Queries

Modification-seeking queries, denoted by ϕm, focus on identifying
potential modifications to a scheduling problem to address specific
issues. For example, Thanos may want to know how to incorporate
his unsatisfied constraint in Alice’s schedule, or a manager may seek
ways to adjust the scheduling problem to generate a feasible sched-
ule.

To explain modification-seeking queries, we assume that KB 6|=
ϕm. Specifically, to explain these query types, we seek to identify a
set of constraints from the knowledge base KB that, when retracted,
KB |= ϕm. Like before, there are two possible scenarios to consider:
• Unsatisfied Agent Constraints in a Schedule: If the query ϕm

concerns accommodating an unsatisfied agent constraint in a
schedule Σµ, then ϕm ∈ CA.
• Infeasible Scheduling Problems: If the query ϕm is aimed at ex-

plaining how a problem can be modified such that a feasible sched-
ule can be found, then ϕm = >.

We now define an explanation for a modification-seeking query as
follows:

Definition 3 (Modification-seeking Explanation). Given a knowl-
edge base KB that encodes an L-ASP L and a modification-
seeking query ϕm, we consider an explanation εm ⊆ KB to be a
modification-seeking explanation for ϕm if:
• εm enables the entailment of ϕm: KB \ εm |= ϕm, meaning that

the query ϕm is entailed when the constraints in εm are removed
from the knowledge base.
• εm is minimal: For all proper subsets ε′m ⊂ εm, KB \ ε′m 6|= ϕm,

indicating that no smaller subset of εm can satisfy the query when
removed from the knowledge base.

These conditions ensure that the modification-seeking explanation is
both effective and minimal in addressing the query.

4.3 Privacy-Aware Explanations

It is reasonable to assume that individuals might prefer explanations
for scheduling decisions that only encompass public information, as
they could perceive these as more satisfying and equitable compared
to explanations that incorporate private information as well. To ex-
plore this possibility and incorporate potential privacy preferences
into our framework, we propose that agents have access rights on the
different pieces of information about the scheduling problem. Specif-
ically, we assume an access-rights function:

α : A×KB → {0, 1} (1)

that determines whether an agent ai ∈ A has access rights to a con-
straint c ∈ KB , returning 1 if ai has access to c and 0 otherwise.

While we have motivated access rights through the lens of pri-
vacy, note that the function can also encode access rights through
other means as well (e.g., security clearances and other administra-
tive compartmentalization protocols).

Given an agent ai and the function α, we define the privacy loss ρi
of an explanation εwith regard to the agent as the count of constraints
inaccessible to it:

ρi(ε) = |ε| −
∑
c∈ε

α(ai, c) (2)

Lastly, we define an explanation εi as being privacy-aware in rela-
tion to agent ai and query ϕ if it incurs the least privacy loss among
all possible explanations E for the query ϕ:

εi = argmin
ε∈E

ρi(ε) (3)

4.4 Illustrating Example

Consider the employee shift assignment problem presented in Sec-
tion 2. To represent the problem using (propositional) logic, we em-
ploy Boolean decision variables xi,j,t for all ai ∈ A, rj ∈ R, and
st ∈ S, where each variable is set to true if and only if agent ai is
assigned shift rj on day st. Otherwise, it is set to false. These vari-
ables comprise the domain constraints CD and agent constraints CA
which make up the knowledge base KB . Note that we assume the fol-
lowing weights for employee constraints CA: w(CR) = w(CV ) >
w(CT ) > w(CI). 2

Recall from Section 2 that Alice has generated a schedule (see
Figure 1) that does not satisfy Thanos’ constraint, prompting him to
ask Alice a reason-seeking query. In our logic-based framework, this
translates to the query ϕr = {¬x1,1,2 ∨ ¬x1,2,2}. There are two
reason-seeking explanations for this query:
• εr1 = {x4,1,2,¬x4,1,2 ∨¬x1,1,2}, stating that only one employee

can be assigned a morning shift on the same day (domain con-
straint) and that Rose’s preference was given a higher priority that
day.
• εr2 = {x3,2,2,¬x3,2,2 ∨¬x1,2,2}, stating that only one employee

can be assigned an afternoon shift on the same day (domain con-
straint) and that Vicky’s preference was given a higher priority that
day.
Now, assume that the access-rights function α is defined such that

Thanos has access-rights to the domain constraints and Rose’s con-
straints, but not to the constraints of other agents. In this case, the pri-
vacy loss ρ1 of both explanations would be calculated as follows:
• ρ1(εr1) = |εr1| −

∑
c∈εr1

α(1, c) = 2 − 2 = 0, since Thanos has

access to Rose’s information.
• ρ1(εr2) = |εr2| −

∑
c∈εr2

α(1, c) = 2 − 1 = 1, since Thanos does

not have access to Vicky’s information.
As ρ1(εr1) < ρ1(εr2), the privacy-aware explanation in this case

would be εr1.

5 QUERIES: Computing Explanations

We now present the Question Understanding and Efficient Response
with Intelligible Explanations of Schedules (QUERIES) algorithm,
which generates privacy-aware explanations ε∗i for reason-seeking
and modification-seeking queries ϕ of an agent ai. The core of
QUERIES is based on reasoning via inconsistency. In particular, it
leverages a set of methods that are directly applicable to logic-based
explanation generation problems, namely, minimal unsatisfiable sets
(MUS) and minimal correction sets (MCS) [25, 29], both of which
emerge when a set of clauses is unsatisfiable. Particularly, an MUS

2 For more details on the encoding, please refer to the supplement available
at https://github.com/YODA-Lab/QUERIES.

https://github.com/YODA-Lab/QUERIES


Algorithm 1: QUERIES Algorithm
Input: KB , ϕ, ai, α, k
Result: privacy-aware explanation ε for ϕ for ai

1 forall c ∈ KB do
2 if α(ai, c) = 1 then
3 assign weight k to c

4 if ϕ is a reason-seeking query then
5 ε← getMUS(KB , ϕ)
6 else if ϕ is a modification-seeking query then
7 ε← getMCS(KB , ϕ)

8 return ε

can be interpreted as explaining why a set of clauses is unsatisfi-
able by identifying a minimal set of conflicting clauses that cause the
unsatisfiability. An MUS can then be used to find a reason-seeking
explanation:

Proposition 1. Given a knowledge base KB and a reason-seeking
query ϕr , εr = M \ {¬ϕr} is a reason-seeking explanation for ϕr
if M is an MUS of KB ∪ {¬ϕr}.

PROOF (SKETCH). The existence of a reason-seeking query ϕr im-
plies that KB |= ϕr , which in turn implies that KB ∪ {¬ϕr} |= ⊥
according to the definition of entailment. That is, the negation of ϕr
is inconsistent with a set of constraints from KB and, as such, an
MUS M of KB ∪ {¬ϕr} exists. If ¬ϕr ∈ M , then M \ {¬ϕr}
is satisfiable and M \ {¬ϕr} |= ϕr . Therefore, M \ {¬ϕr} is a
reason-seeking explanation for ϕr . 2

Similarly, an MCS explains how to restore consistency in an in-
consistent KB by identifying a minimal set of clauses from KB such
that when removed, KB becomes satisfiable. A modification-seeking
explanation can be then be generated via an MCS:

Proposition 2. Given a knowledge base KB and a modification-
seeking query ϕm, C is a modification-seeking explanation for ϕm
if C is an MCS of KB ∪ {ϕm} and ϕm 6∈ C.

The proof of Proposition 2 follows from the fact that a
modification-seeking explanation for ϕm is indeed an MCS of KB ∪
{ϕm}.

Algorithm 1 presents the pseudocode of QUERIES, which gener-
ates explanations for an agent ai. At a high level, it iterates over all
constraints in KB and assigns large weights k >> 1 to constraints
that are public to agent ai with respect to access-rights function α.
Then, the MUS (or MCS) solver prioritizes the constraints with the
largest weights, which means that the output of the solver is a set of
constraints with the largest cumulative sum of weights (i.e., privacy-
aware explanation).

The completeness of QUERIES lies in the assumption we made
for the two query types, which is that an explanation for both query
types always exists. The correctness of QUERIES lies in the cor-
rectness of the MUS and MCS solvers and the assumption that k is
sufficiently large such that explanations with the largest cumulative
sum of weights are privacy-aware explanations.

6 Empirical Evaluations

We now empirically evaluate our approach both in simulated compu-
tational experiments as well as in a human user study.

6.1 Computational Evaluation

We now present a computational evaluation of QUERIES for the fol-
lowing four queries, two for each query type, where Ca is an agent’s
clause and Σ an infeasible schedule:3

• Reason-seeking query (agent): Why is Ca unsatisfied?
• Modification-seeking query (agent): How to satisfy Ca?
• Reason-seeking query (schedule): Why is Σ infeasible?
• Modification-seeking query (schedule): How to make Σ feasible?

We ran our experiments on a MacBook Pro machine comprising
an M1 Max processor with 32GB of memory. The time limit was
set to 500s. Our implementation of QUERIES is written in Python
and integrates calls to MUS and MCS oracles through the PySAT
toolkit [20].4

To comprehensively evaluate our approach, we ran three sets of
experiments: (1) To demonstrate the scalability of our approach, we
evaluated it on our motivating employee shift assignment problem
of varying size; (2) To demonstrate the impact of privacy or access
rights, we evaluated our algorithm on the same scheduling problem,
but agents have varying access rights; and (3) To demonstrate the
generality of our approach, we evaluated it on an SMT-based encod-
ing of the job-shop scheduling problem.

Experiment 1: Scalability: In this experiment, we vary the scale
and complexity of the agent scheduling problem by varying the num-
ber of agents |A|, resources |R|, and time steps |S| in the problem.
Specifically, we created 14 random instances, where each instance
has |A| = 10 · i agents, |R| = 10 · i resources, and |S| = 10 time
steps, with i taking the values 1, 1.5, 2, . . . , 7.5. For the domain con-
straints, we extended the ones described in Section 2 to include more
agents, shift types, and time steps, as well as included an additional
constraint describing the maximum number of consecutive shifts an
employee can undertake without a day off. For the agent constraints,
we generated 5 types of constraints to reflect different kinds of prefer-
ences similar to those presented in Section 2, and randomly assigned
them to the agents. We set the fraction p = 0.5 of agents that each
agent has access rights to. If an agent ai has access rights to agent
aj , then ai is aware of all of agent aj’s constraints.

Figures 3(a) and 3(b) plot the runtimes of QUERIES as a function
of the cardinalities of the knowledge base |KB | and the explana-
tion |ε| found, respectively. Unsurprisingly, the runtimes increase as
the cardinalities increase. The reason is that the search space grows
with |KB |, also reflected in |ε|. Also, modification-seeking queries
took longer to solve than reason-seeking queries. The reason is that
our off-the-shelf MCS solver, used for modification-seeking queries,
is less efficient than our off-the-shelf MUS solver, used for reason-
seeking queries.

Experiment 2: Access Rights: In this experiment, we use the same
employee shift assignment problem, where we set the number of
agents |A| = 40, resources |R| = 40, and time steps |S| = 5. We
vary the fraction p = {0, 0.1, 0.2, . . . , 1} of other agents that each
agent has access rights to.

Figures 4(a), 4(b), and 4(c) plot, as a function of access rights
fraction p, the runtimes of QUERIES, privacy losses ρi(ε) of ex-
planations, and cardinality of explanations |ε|, respectively. Similar
to the previous experiment, the runtimes are larger for modification-

3 Ca was randomly selected from a pool of unsatisfied clauses of agent a
and Σ was generated by randomly flipping 20% of the values of a feasible
schedule.

4 The code repository is available at https://github.com/YODA-
Lab/QUERIES.

https://github.com/YODA-Lab/QUERIES
https://github.com/YODA-Lab/QUERIES
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Figure 3: Results of Experiment 1 on the Scalability of QUERIES
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Figure 5: Results of Experiment 3 on SMT-based Encoding of Job-Shop Scheduling

seeking queries than reason-seeking queries. However, unlike the
previous experiment, there is a significant difference in |ε| for the
different queries in this experiment. As the modification-seeking
queries required longer explanations, they took longer to solve than
reason-seeking queries.

Additionally, the runtimes stay relatively constant for all values of
p, reflecting the fact that the runtimes for the MCS and MUS com-
putations are independent of the weights of the clauses. Also, as ex-
pected, the privacy loss decreases as p increases since fewer clauses
are private as p increases. Finally, as p increases, |ε| either decreases
or remains constant, indicating that the solver can find shorter (i.e.,
better) explanations when the explanation space expands with larger
values of p.

Experiment 3: SMT and Job-Shop Scheduling: Finally, to demon-
strate that our explainable scheduling framework and algorithm can
be generalized to other scheduling problems as well as other types
of logic aside from propositional logic, we evaluate our approach

on a Satisfability Modulo Theory (SMT) encoding of the job-shop
scheduling problem [30]. SMT is a decision problem that extends
Boolean logic and allows for richer representations of real-world
problems with logical formulae that are based on a combination of
background theories such as integers and reals [13].

The job-shop scheduling problem involves assigning a set of jobs,
each with its own processing time, to machines in a way that ensures
all jobs are completed. We encoded this problem in Python using
the Z3 solver [12], and generated 11 instances by varying the num-
ber of jobs, processing times, and machines. For the MUS and MCS
solvers, we used off-the-shelf implementations available within Z3.
Similar to the previous experiment, we generated queries with an un-
satisfied constraint and an infeasible schedule.

Figures 5(a) and 5(b) plot the runtimes of QUERIES as a function
of the cardinalities |KB | and |ε|, respectively. We observed trends
similar to those in Experiment 1, attributable to the same reasons
described earlier."



Figure 6: Human user study results from 60 users: (a) Percentage
of users that selected generic and privacy-aware explanations; and
(b) Percentage of users that were satisfied, indifferent, or unsatisfied
with the privacy-aware explanation.

6.2 Human User Study

We now present a user study aimed at examining the assumptions
made in our framework. In particular, we hypothesize:

Within agent scheduling problems, individuals prefer expla-
nations containing only public information (e.g., publicly ac-
knowledged rules and constraints) over those including private
information (e.g., other employees’ names and personal con-
straints), as they perceive them as more satisfactory.

To evaluate this hypothesis, we conducted a human user study in-
volving 60 English-speaking participants recruited through the on-
line platform Prolific [26]. The study is centered around the em-
ployee shift assignment problem introduced earlier, with participants
engaging in a thought experiment by assuming the role of an em-
ployee in a hypothetical company.

We informed the participants that Alice, an automated schedul-
ing agent, was responsible for creating a schedule under the previ-
ously described domain constraints, ensuring that this information
was public and known to all users. Participants were asked to choose
a personal constraint from four available options, making them aware
of only their own personal constraint, while the remaining agent con-
straints were considered private information. The participants then
received their shift assignments, and were notified that their personal
constraint was not satisfied in Alice’s schedule.

Their primary task was to select an explanation out of two op-
tions: a generic explanation, which contained another employee’s
name and private constraint as the reason for their unsatisfied con-
straint, and a privacy-aware explanation, which included only a pub-
lic domain constraint. Participants then answered questions about
their choice of explanation and their satisfaction levels.

Figure 6 presents the main results of the study. The majority
(83.4%) of participants preferred the privacy-aware explanation (Fig-
ure 6(a)). Among those who chose the privacy-aware explanation,
54% were satisfied, while the remaining participants were either in-
different (22%) or unsatisfied (24%), as shown in Figure 6(b). In the
analysis of responses to the justification question, i.e., “why they se-
lected the particular explanation”, we observed a common trend: the
privacy-aware explanation was considered more “informative” and
“equitable” to all employees. Here, informative meant that it con-
tained well-justified rules (i.e., constraints known to them), while
“equitable” implied that it was not personal in the sense that it did not
disclose other employees’ information. Finally, when asked whether
an explanation for a scheduling decision should include only public
information, only private information, or a combination of both, the
vast majority (88%) responded that only public information should

be included, while the remaining participants (12%) suggested a
combination of both public and private information.

In conclusion, our study supports the hypothesis that individuals
prefer explanations containing only public information, which they
perceive as not only more satisfactory but also more equitable.. Based
on these findings, our explanation generation framework is designed
to align with people’s expectations for a scheduling decision expla-
nation in this particular context.

7 Related Work

There is a small body of literature on explainable scheduling, with
EXPRES [28] being the most relevant related work. It uses a MILP
to find explanations for unsatisfied user preferences. Nevertheless, it
is limited to only identifying a set of reasons for unsatisfied user
preferences, thus lacking the ability to address and explain other
types of queries, such as how (or why) a schedule can be (or is)
(in)feasible. With regards to privacy, EXPRES preserves privacy
by post-processing explanations to remove identifying reference to
agents. In contrast, we give a more thorough treatment on this is-
sue as we found that it is key to users in our user study. On a sim-
ilar thread, Cyras et al. [11] proposed an argumentation-based ap-
proach for explaining why a schedule is (or not) feasible and why a
preference was unsatisfied in the schedule, as we also tackle in this
paper. The key differences between their approach and ours is that
they do not consider any privacy preservation strategies, they are re-
stricted to makespan scheduling problems, and they did not provide
any experimental evaluation of their approach. Finally, Agrawal et
al. [1] and Bertolucci et al. [3] also consider the problem of explain-
ing scheduling decisions, however, their scope is limited to specific
domain applications – scheduling Mars rovers and operating rooms,
respectively.

A related research area is explainable planning, which has a
larger body of work. Most of the approaches in this area aim at
explaining planning-specific queries, such as why a plan is feasi-
ble/optimal and why a particular action is (or not) included in a
plan [7, 16, 31, 32, 37, 39]. Closely related is the work by Vasileiou
et al. [35], which also uses minimal correction sets (MCS) and mini-
mal unsatisfiable sets (MUS) to find explanations. However, the key
differences between their approach and ours is that they do not con-
sider privacy preservation and they take a philosophically different
approach of finding explanations by reconciling the differences be-
tween the mental models of the explainer and explainee. Finally, for
a further exposition on the relationship between our approach and
previous works such as diagnosis and MUS generation, we refer the
reader to the work by Vasileiou et al. [35, 36].

8 Discussion

Privacy: Despite optimizing for privacy, explanations may still con-
tain private constraints with respect to the explainee. As such, pri-
vacy leakage can occur when these explanations are relayed to the
explainee. To address this issue and preserve the agents’ privacy, we
can post-process the explanation by abstracting away the remaining
private constraints. This process can take different forms, such as
masking all identifying references to the agents’ whose private con-
straints are included in the explanation or by completely retracting
the private constraints from the explanation.

As an example, consider that Thanos has no access rights to
any of the agent constraints. Then, the reason-seeking explanation



εr = {x4,1,2,¬x4,1,2 ∨ ¬x1,1,2} that is generated for him unfor-
tunately includes Rose’s identity and private constraint (= x4,1,2).
Post-processing εr will allow us to retract x4,1,2 from εr and
mask the identity of Rose from the remaining clause ¬x4,1,2 ∨
¬x1,1,2, for example, by transforming the clause to its general-
ized form atmost1({x1,j,t, x2,j,t, x3,j,t, x4,j,t}) ∀rj∈R,st∈S (do-
main constraint C3).

Explanation Delivery: After the (potential) abstraction phase, the
(post-processed) explanation needs to be communicated to the agent.
Unless the explainee agent is a domain expert, the explanation should
not be communicated in a logical representation, but rather in a
human-understandable format such as natural language. A trivial di-
rection could be to leverage the expressivity and symbolic nature of
logic. That is, we can define natural language templates and use them
to map the generated explanations. In particular, notice that each con-
straint “symbolizes” a specific constraint type and is grounded on
(propositional) variables, with each variable denoting a scheduling
element such as an agent, a resource, or a time step. For instance,
εr = {x4,1,2,¬x4,1,2∨¬x1,1,2} says that Rose is assigned the morn-
ing shift on Tuesday (x4,1,2), and that either Rose or Thanos can be
assigned a morning shift on Tuesday ({¬x4,1,2∨¬x1,1,2}). As such,
a logic-based explanation can be transformed into a natural language
explanation by identifying and mapping the constraints to their re-
spective pre-defined, natural language templates. Another possibility
is to leverage Large Language Models (LLMs) [6] to translate logical
explanations into natural language. However, the accuracy of such
translations will need to be validated through additional research as
LLMs have been shown to have hallucination issues [40]. Another
approach is through visualization systems [22,33], though these sys-
tems will likely need to be crafted with significant domain expertise.

Ethical Considerations: It is paramount to assess the ethical im-
plications of our work. In our context, two ethical considerations
emerge – the explanation unavoidably involves private information,
and the fair resolution of conflicting agent constraints. The former
concern can be addressed by the post-processing mechanisms de-
scribed above. For the latter, while we do not address the issue di-
rectly in our work, we imagine that fairness could be achieved by
employing multi-objective optimization techniques [15, 17, 19] that
seek a balance among conflicting constraints.

Although our current framework does not present definitive solu-
tions to these complex issues, these potential directions could guide
the future trajectory of research in this field. Subsequent iterations
should integrate these considerations, working towards not just prac-
tical but also ethically robust AI explanation systems.

9 Conclusions

In this paper, we tackled the challenge of generating explanations for
agent scheduling problems. We proposed a logic-based framework
capable of generating privacy-aware explanations for reason-seeking
and modification-seeking queries. To the best of our knowledge, our
framework is the first to present a general approach that tackles a
broad spectrum of agent scheduling problems while quantifying and
optimizing for privacy. Our experimental results demonstrate the ef-
ficacy of our framework, and our user study supports the importance
of privacy, fairness, and informativeness in explanation generation
for scheduling systems.
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