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Abstract. The model reconciliation problem is a popular paradigm within the
explainable AI planning community that has been proposed as a way to pro-
vide explanations from an agent to a human user about a particular plan. Exist-
ing methods to solve this problem have been restricted to planning scenarios in
which the user has a deterministic model of the problem domain (i.e., users have
full certainty on their beliefs). In this paper, we propose a general logic-based
explanation generation framework that extends the model reconciliation problem
to users with probabilistic models of the problem domain (i.e., users have varying
levels of certainty about their beliefs).

Keywords: Explanations as Model Reconciliation · Probabilistic Logical Rea-
soning · Degrees of Belief.

1 Introduction

The Model Reconciliation Problem (MRP) [3] is a popular paradigm within the realm
of Explainable AI Planning (XAIP) that integrates mental models of users4 in the ex-
planation generation process of an agent. These explanations bring the model of the
user closer to the agent’s model by transferring a minimum number of updates from the
agent’s model to the user’s model. While many advancements towards the model rec-
onciliation problem realize the inception of good XAIP systems [12,2], they are usually
built on a facile assumption: They assume the users have deterministic models of the
problem domain, i.e., users’ beliefs are of Boolean attributes. However, users might
disregard explanations as unconvincing if they do not conform with or reflect to some
level their personal beliefs (e.g., confirmation bias).

To this extent, we are interested in generalizing MRP to account for users with
probabilistic models of the problem domain, i.e., users have varying levels of certainty
about their beliefs. We build on the theoretical foundations laid by [14] and extend a
general logic-based framework, where given a knowledge base KBa (of an agent) that

4 A mental model is just the user’s version of the problem which the agent possess, and interest-
ingly, it can be expressed as a graph, a planning model, or even a logic program.
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entails a formula φ and a knowledge base KBh (of a user that the agent has) that does
not entail φ, the goal is to identify an explanation ε for φ from KBa for KBh such that
when it is used to update KBh, then the updated KBh has a higher degree of belief in
φ.

The notion of degree of belief in this paper has a subjective (or Bayesian) interpre-
tation and is interchangeable with the notion of degree of probability.5 As such, degrees
of belief, also referred to as subjective beliefs, are degrees of certainty, or credences
of subjects (i.e., agents or human users), which are used to quantify the strengths of
their belief attitudes.6 A formalization of this idea would have the degree of belief in a
proposition to be confined on a scale from 0 to 1, where 0 indicates absolute certainty
in the falsity of the proposition, 0.5 indicates that the proposition is just as likely to be
true or false, and 1 indicates absolute certainty in its truth.

2 Preliminaries

We assume basic familiarity with standard methods in propositional logic (i.e., SAT
and (weighted) model counting) (see [1]), and classical planning (i.e., STRIPS and
planning as SAT) (see [8]). In what follows, we assume a consistent knowledge base
KB comprising propositional formulae.

Definition 1 (Skeptical Entailment). A formula φ is skeptically entailed by KB, de-
noted byKB |=s φ, ifMOD(KB) 6= ∅ and φ ∈ m for everym ∈MOD(KB), where
MOD(KB) denotes the satisfiable models of KB. Also, KB |=s φ iff KB ∧ ¬φ is
unsatisfiable.

Definition 2 (Credulous Entailment). A formula φ is credulously entailed by KB,
denoted by KB |=c φ, if MOD(KB) 6= ∅ and φ ∈ m for some m ∈MOD(KB).

Definition 3 (x-Support). Given a KB s.t. KB |=x φ, an x-support for φ is a subset
ε ⊆ KB such that ε |=x φ and, ∀ε′ ⊂ ε, we have ε′ 6|=x φ, where x ∈ {s, c} refers to
either skeptical (s) or credulous (c) entailment.

Model Reconciliation: A Model Reconciliation Problem (MRP), as introduced by
Chakraborti et al. [3], is defined by the tuple Ψ = 〈φ, π〉, where φ = 〈Ma,Ma

h 〉 is
a tuple of the agent’s model Ma = 〈Da, Ia, Ga〉 and the agent’s approximation of the
user’s model Ma

h = 〈Da
h, I

a
h , G

a
h〉, and π is the cost-optimal plan in Ma. A solution to

an MRP is a shortest explanation ε s.t. when it is added to the user’s model, the plan π
is cost-optimal in both the agent’s model and the updated user’s model.

In [14] we have reformulated MRP into a logic-based account:

Definition 4 (L-MRP). Given two knowledge bases KBa and KBh of the agent pro-
viding an explanation and the human receiving the explanation, respectively, such that
KBa |=s φ and KBh 6|=s φ, the goal of L-MRP is to find an explanation ε = 〈ε+, ε−〉,
where ε+ ⊆ KBa and ε− ⊆ KBh, s.t. K̂B

ε

h |=s φ, where K̂B
ε

h = (KBh ∪ ε+) \ ε−

5 To quote De Morgan from two centuries ago: “By degree of probability, we really mean, or
ought to mean, degree of belief.” [5].

6 Naively, the subjective interpretation of probability as degree of belief locates probability in a
subject’s mind [7].
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We refer to the set of formulae ε as the update of the knowledge base KBh, where
new formulae ε+ from KBa are added and erroneous formulae ε− from KBh are re-
moved to ensure consistency. Note that in our prior work [13], we focused on the spe-
cific task of computing an explanation ε s.t. ε \KBh is an update of minimum size.

3 Probabilistic Logical Reasoning

This section describes the notion of degree of belief in a formula ϕ with respect to a
knowledge base KB, a fundamental approach introduced by [10] that combines prob-
abilistic and logical reasoning into a unified framework, namely probabilistic logical
reasoning. In essence, the degree of belief in a formula ϕ with respect to a deterministic
knowledge base KB7 is defined to be the conditional probability of ϕ given KB. The
complexity of computing degrees of belief with respect to a knowledge base is polyno-
mially related to the complexity of computing the number of models of the knowledge
base, which is know to be complete in #P [10]. Formally,

Definition 5 (Degree of Belief of ϕ w.r.t. a Deterministic Knowledge Base). Given a
deterministic knowledge base KB and a formula ϕ, the degree of belief in ϕ given KB
is P (ϕ | KB) = MC(KB∧ϕ)

MC(KB) , where MC(KB) is the model count of KB.

This means that the degree of belief in ϕ givenKB is the fraction of models ofKB
in which ϕ evaluates to true. However, if we were to consider more realistic, real-world
scenarios, then we would need to able to also represent probabilistic knowledge about
the world. Such a representation constitutes the need for a probabilistic knowledge base:

Definition 6 (Probabilistic Knowledge Base). A probabilistic knowledge base is a
tuple 〈KB,w〉, where KB is a deterministic knowledge base, and w a weight function
that assigns weights to the literals l in KB such that 0 ≤ w(l) ≤ 1.

Fundamentally, a probabilistic knowledge base is a weighted knowledge base over
its literals. Specifically, for each literal l of a probabilistic knowledge base, we use w(l)
and w(¬l) to denote the weights of the positive and negative literals, respectively. We
assume that every literal l has either (1) an indifferent weight (i.e., w(l) = w(¬l) = 1),
often referred to as evidence, that is ignored by weighted model counting algorithms
for computing probabilities conditioned upon the evidence; or (2) a normal weight
(i.e., w(l) ≤ 1), where w(l) + w(¬l) = 1. If every literal has weight 1, then the
probabilistic knowledge base reduces to a deterministic knowledge base. Further, we
say that a probabilistic knowledge base 〈KB,w〉 is inconsistent if WMC(KB) = 0,
where WMC(KB) denotes the weighted model count of KB, i.e., WMC(KB) =∑
m|=sKB

∏
m|=sl w(l).

We should point out that Definition 6 is semantically similar to the definition of a
weighted propositional formula in logic. A weighted formula representation has been
widely used to solve probabilistic inference problems by means of WMC on a variety of
problems, [11,6]. Following the same terminologies, the degree of belief in a formula

7 A deterministic knowledge base is a knowledge base in the usual sense, i.e., one that contains
no statistical/probabilistic facts.
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ϕ with respect to a probabilistic knowledge base reduces to computing the weighted
model counting of the knowledge base:

Definition 7 (Degree of Belief of ϕ w.r.t. a Probabilistic Knowledge Base). Given a
probabilistic knowledge base 〈KB,w〉 and a formula ϕ, the probability of ϕ givenKB
is P (ϕ | KB) = WMC(KB∧ϕ)

WMC(KB) .

For the next section, we assume that KB is defined as a tuple 〈KB,w〉, where KB
is deterministic if w(l) = 1 for all literals l ∈ KB and is probabilistic otherwise.

4 Explanations via Probabilistic Reasoning

We now describe our framework, which generalizes L-MRP to account for probabilistic
domains. We formulate the notion of an explanation in the following setting, where, we
use the term |=x for x ∈ {s, c} to refer to skeptical (s) or credulous (c) entailment:

Explanation Generation Problem (EGP): Given two knowledge bases KBa
and KBh and a formula ϕ, where KBa |=x ϕ and KBh 6|=x ϕ, the goal is to
identify an explanation ε = 〈ε+, ε−〉, where ε+ ⊆ KBa and ε− ⊆ KBh, s.t.
when it is used to update KBh to K̂B

ε

h, P (ϕ | K̂B
ε

h) > P (ϕ | KBh).

An explanation in this setting would increase the degree of belief in a formula with
respect to a user’s knowledge base by imposing an update in their knowledge base,
where new formulae ε+ from KBa are added and erroneous formulae ε− from KBh
are removed as there may be contradictory formulae in KBh and ε+. Furthermore, for
probabilistic knowledge bases, the explanation may be of the form 〈ε, wε+〉, where wε

+

are the weights of the explanation added to KBh. In this case, the literals are assigned
weights w.r.t. KBh’s weight function if they exist in KBh, or w.r.t. KBa’s weight
function otherwise.8 More formally, we define the knowledge base update as follows:

Definition 8 (Knowledge Base Update). Given a knowledge base 〈KBh, wKBh〉 and
an explanation 〈ε, wε+〉, where ε = 〈ε+, ε−〉 ⊆ KBa ∪KBh, the updated knowledge
base is 〈K̂B

ε

h, ŵ
ε+〉, where K̂B

ε

h = (KBh ∪ ε+) \ ε− and ε− ⊆ KBh \ ε+ is a set of
formulae that must be removed from KBh s.t. the updated K̂B

ε

h is consistent, and for
each literal l ∈ ε+, ŵε

+

(l) = wKBh(l) if l ∈ KBh, or ŵε
+

(l) = wε
+

(l) otherwise.

Note that we make the assumption that if a literal is not contained in a knowledge
base, then it is also not contained in the language of the knowledge base. Hence, when
updating a knowledge base with a new literal, we also implicitly extend its language. In
what follows, and unless stated otherwise, when mentioning the update of KBh with
an explanation ε, we will refer to the formulae of the ε added to KBh (i.e., ε+).

We now define the notion of an explanation with respect to two knowledge bases.

8 Note that when updating a knowledge base with new literals, we preserve the property of its
weight function. However, in future work we plan to investigate this from the lens of MRP.
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Definition 9 (Explanation). Given knowledge bases KBa and KBh and a formula ϕ,
assume that KBa |=x ϕ and KBh 6|=x ϕ. Then, ε ⊆ KBa ∪KBh is an explanation
for ϕ from KBa for KBh if ε |=x ϕ and P (ϕ | K̂B

ε

h) > P (ϕ | KBh).
One can see that an interesting concept to explore given the definition above is that

of a maximally-convincing explanation, that is, an explanation that yields the highest
degree of belief in a given formula:

Definition 10 (Maximally-Convincing Explanation). ε is a maximally-convincing ex-
planation for ϕ from KBa for KBh if ε is an explanation according to Definition 9 and

6 ∃ε′ ⊆ KBa ∪KBh s.t. P (ϕ | K̂B
ε′

h ) > P (ϕ | K̂B
ε

h).

Unfortunately, even computing the degree of belief in a formula w.r.t. a knowledge
base is #P -complete [10,4]. Additionally, maximally-convincing explanations might
require a higher cognitive effort from the users to understand them, as it is more likely
that such explanations would also have high cardinality. As such, maximally-convincing
explanations may impose practical limitations on the agent (computing the explanation)
as well as the user (parsing the explanation). Nonetheless, this can be remedied as fol-
lows: We can simply seek to find an explanation ε that increases the degree of belief in
a given formula up to at least a user-defined bound and is of minimal cardinality among
those set of explanations. We refer to this as a bounded-convincing explanation:

Definition 11 (Bounded-Convincing Explanation). ε is a bounded-convincing expla-
nation for ϕ from KBa for KBh if ε is an explanation according to Definition 9 and (i)
P (ϕ | K̂B

ε

h) ≥ bp, where bp is a user-defined lower bound; and (ii) 6 ∃ε′ ⊂ ε s.t. ε′ is
an explanation.

Therefore, a bounded-convincing explanation is an explanation that is convincing,
i.e., it increases the degree of belief up to at least a desirable bound, and concise, i.e., it
has the minimal cardinality among the set of convincing explanations.

5 Conclusions

The main purpose of this work is to provide an account for generating more person-
alized explanations for users. Such an account may pave the way for trustworthy au-
tonomous agents, as users may be more inclined to accept explanations that account for
their beliefs (e.g., confirmation bias). Nevertheless, the biggest challenge here would
be the ability to learn the user’s beliefs. Even though there has been some interest on
that end [9], further research is required. We posit, though, that this may be achieved by
exploiting the potential advantage of an interconnected explanation generation process.
For instance, a multi-shot explanation approach would allow users to interact, in a col-
laborative manner, with the agent’s explanation process, and thus allow them to provide
useful information about their knowledge, beliefs, or preferences.

To conclude, we proposed a general logic-based framework for the model recon-
ciliation problem (MRP), which generalizes it to account for users with varying levels
of confidence in their beliefs. Due to its logical nature, our framework has the advan-
tage of being able to deal with problems coming from different settings, so long as the
problems can be represented with a logical formalism.
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